Reaction of (Me₃Si)₂C(SiMe₂Ph)(SiEt₂I) with AgBF₄. 1,3-Migration of the Phenyl Group

Colin Eaborn,* Paul D. Lickiss,† Sabah T. Najim and Włodzimierz A. Stańczyk‡ School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

The reaction of $(Me_3Si)_2C(SiMe_2Ph)(SiEt_2I)$ with $AgBF_4$ in Et_2O has been shown to give a ca. 2:3 ratio of the unrearranged $(Me_3Si)_2C(SiMe_2Ph)(SiEt_2F)$ and the rearranged $(Me_3Si)_2C(SiEt_2Ph)-(SiMe_2F)$. The reaction is thought to proceed via a cation, II, in which there is a 1,3-phenyl bridge between silicon atoms. Reaction of the organolithium reagent $(Me_3Si)_2C(SiMe_2Ph)Li$, R'Li, with Me_2SiHCI , Et_2SiFCI and Et_2SiCI gives the products R'SiMe_2H, R'SiEt_2H, R'SiEt_2F and R'SiEt_2CI, respectively.

Reactions of compounds of the type $(Me_3Si)_3CSiR_2I$ with various electrophiles, such as Ag^I or Hg^{II} salts, ICI and CF_3CO_2H , are thought to involve rate-determining formation of cations of type I, Z=Me, which can be attacked by a nucleophile Y^- at either the Si(1) or Si(3) centre, so that rearranged products $(Me_3Si)_2C(SiR_2Me)(SiMe_2Y)$ can be formed exclusively or along with the unrearranged $(Me_3Si)_3-CSiR_2Y$.^{1,2}

Similar migration of a vinyl group was found to occur in reactions of (Me₃Si)₂C(SiMe₂CH=CH₂)(SiEt₂I) with silver salts, apparently via the cation I, R = Et, $Z = CH=CH_2$. The bridging in cations of type I bears analogy both to that in the dimers (AlMe₂Z)₂⁴ and to 1,2-bridging in carbocations.⁵ As far as we are aware 1,3-migration of Ph groups between carbon centres in carbocations is, like that of Me groups, unknown, although that of vinyl groups has been observed.⁶ However, the phenyl group bridges very effectively in the dimer (AlMe₂Ph)₂⁴ and readily takes part in 1,2-bridging (and migrations) within carbocations,5 and so it seemed to us very likely that bridged ions of type I, Z = Ph could be formed and the associated rearrangements observed. We thus examined the reaction of the iodide (Me₃Si)₂C(SiMe₂Ph)(SiEt₂I), 1, with AgBF₄, and the results described below show that the expected rearrangements do, in fact, occur, as briefly noted in a preliminary report. ⁷ Since the appearance of the latter report migration of the Ph group has also been observed in solvolysis of the iodide 1.8

$$\begin{aligned} (\text{Me}_3\text{Si})_2\text{C}(\text{SiMe}_2\text{Ph})(\text{SiEt}_2\text{I}) & (\text{Me}_3\text{Si})_2\text{C}(\text{SiMe}_2\text{Ph})(\text{SiEt}_2\text{F}) \\ \textbf{1} & \textbf{2} \\ & (\text{Me}_3\text{Si})_2\text{C}(\text{SiEt}_2\text{Ph})(\text{SiMe}_2\text{F}) \\ & \textbf{3} \end{aligned}$$

Results and Discussion

Compound 1 was made by the route depicted in Scheme 1. Attempts by other routes were unsuccessful but gave some

Scheme 1 Reagents and conditions: i, BuLi in tetrahydrofuran-Et₂O-hexane-pentane at -120 °C; ii, Me₂PhSiCl at -110 °C, then allowed to warm to room temperature; iii, MeOH; iv, MeLi in tetrahydrofuraan under reflux; v, Et₂SiHCl, reflux; vi, I₂ in CCl₄

results of interest and these are briefly described later. To assist in the analysis of the products, a sample of the fluoride $(Me_3Si)_2C(SiMe_2Ph)(SiEt_2F)$, 2, was obtained by treatment of $(Me_3Si)_2C(SiMe_2Ph)Li$ with Et_2SiF_2 .

A mixture of 1 (0.8 mmol) and AgBF₄ (1.0 mmol) in Et₂O (20 cm³) was stirred for 5 min at room temperature and the solvent then evaporated. The residue was extracted with pentane, the extract was filtered and evaporated, and the residue sublimed. Linked GLC-mass spectroscopy (GLC-MS) revealed the presence of two components in ca. 3:2 ratio having virtually identical mass spectra consistent with the formulation $(Me_3Si)_2C(SiMe_2Ph)(SiEt_2F)$, 2, and $(Me_3Si)_2C(SiEt_2Ph)$ -(SiMe₂F), 3. The minor component had a retention time identical with that of the authentic sample of 2, and so was the unrearranged product. The ¹⁹F NMR spectrum of the mixture in CCl_4 – $CDCl_3$ showed a quintet at δ_F – 156.2, a shift identical to that for authentic 2, and a heptet at δ_F -138.9 that was assigned to the SiMe₂F groups of 3. [Compare δ_F – 143.0 for (Me₃Si)₃CSiMe₂F.] The ²⁹Si NMR spectrum showed the signals from 2 along with those attributable to 3.

The ¹H NMR spectrum also showed the signals from 2 along with those attributable to 3, and relevant integration ratios were consistent with a 3:2 ratio of compounds 3 and 2. An important feature was the integration ratio of ca. 2.2:1 for the signals from the protons of Ph groups relative to those from the Me groups of $SiMe_2Ph$, since the ratio would be 5:6 if no migration of Ph groups took place. Expansion of the spectrum showed the ratio of the integrated signals from $SiMe_2Ph$ and $SiMe_2F$ to be ca. 1:1.4 reasonably consistent with a 3:2 ratio of 3 to 2.

The formation of more 3 than 2 was to be expected, since there is less steric hindrance to attack of F⁻ at Si(3), bearing two Me groups, than at Si(1), bearing two Et groups. In the solvolysis of 1 in CF₃CH₂OH there is an even higher proportion of rearranged product.⁸

Aspects of some Syntheses.—Our first attempt to obtain 1 involved generating (Me₃Si)₂C(SiMe₂Ph)Li by treatment of

[†] Present address: Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, UK.

[†] Present Address: Polish Academy of Sciences Centre of Molecular and Macromolecular Studies, ul. Sienkiewicza No. 112, 90-363 Lódz, Poland.

(Me₃Si)₂C(SiMe₂Ph)Cl with BuLi in Et₂O-THF-pentanehexane at -100 °C, adding Et₂SiCl₂, and allowing the mixture to warm to room temperature. The product after hydrolytic work-up was a 1:1 mixture of (Me₃Si)₂C(SiMe₂Ph)Bu and (Me₃Si)₂C(SiMe₂Ph)H. The result can be attributed to the failure of (Me₃Si)₂C(SiMe₂Ph)Li to react with Et₂SiCl₂ under the conditions used; some of it reacts instead with the BuCl formed in the initial cross-metallation, and the remainder is hydrolysed on work-up to give (Me₃Si)₂C(SiMe₂Ph)H. In keeping with this, when the less sterically hindered Me₂SiHCl was used in place of Et₂SiCl₂ the expected (Me₃Si)₂C-(SiMe₂Ph)(SiMe₂H) was obtained in good yield, showing that (Me₃Si)₂C(SiMe₂Ph)Li had indeed been formed. Later, when (Me₃Si)₂C(SiMe₂Ph)Li generated from (Me₃Si)₂C(SiMe₂Ph)H and MeLi was treated with Et₂SiCl₂ in refluxing THF, the chloride (Me₃Si)₂C(SiMe₂Ph)(SiEt₂Cl) was obtained, but only in 10% yield. Subsequently, (Me₃Si)₂C(SiMe₂Ph)Li generated in this way was found to react readily with Et₂SiHCl and Et₂SiF₂, which are less sterically hindered than Et₂SiCl₂. The low reactivity of (Me₃Si)₂C(SiMe₂Ph)Li towards the latter is consistent with the unreactivity of (Me₂PhSi)₃CLi towards this chloride, which reacts readily with (Me₃Si)₃CLi.⁹

The (Me₃Si)₂C(SiMe₂Ph)H used in the reactions described above was initially made by metallation of (Me₃Si)₂CH₂ with MeLi to give (Me₃Si)₂CHLi followed by addition of Me₂SiPhF, but the yield based on the amount of (Me₃Si)₂CH₂ was only 25% because only ca. 27% of the (Me₃Si)₂CH₂ had been converted into (Me₃Si)₂CHLi. [The inefficiency of the metallation of (Me₃Si)₂CH₂ by MeLi was observed some time ago. 10] A subsequent attempt to make (Me₃Si)₂C(SiMe₂Ph)H by metallation of (Me₃Si)₂CH₂ with BuLi-TMEDA followed by treatment of Me₂SiPhF gave a 3:2 mixture of two isomeric products, as indicated by GLC-MS, both giving mass spectra consistent with the formulation (Me₃Si)₂C(SiMe₂Ph)H (see Experimental section), though it is difficult to envisage formation of any isomer of the expected product. The ¹H NMR spectrum of the mixture showed that (Me₃Si)₂C(SiMe₂Ph)H (of which an authentic sample was available) was the major product, and metallation of the mixture with MeLi in THF followed by treatment with Et₂SiF₂ gave the expected $(Me_3Si)_2C(SiMe_2Ph)(SiEt_2F).$

Experimental

General.—Diethyl ether and pentane were dried over sodium wire. Tetrahydrofuran was heated under reflux with LiAlH₄, then distilled, and stored over sodium wire. Solutions of BuLi and MeLi in hexane were obtained from Aldrich. Where indicated MeLi in ether was made from MeBr and Li. All reactions involving organolithium reagents were conducted under nitrogen.

Instrumentation.—The ¹H NMR spectra were recorded with a Perkin-Elmer R32 spectrometer at 90 MHz or, where indicated, a Bruker WM360 at 360 MHz. Unless otherwise indicated solutions were in CCl₄ containing CH₂Cl₂ as lock and internal reference. J Values are in Hz. The ¹⁹F NMR spectra were recorded on a Bruker WP80SY instrument at 75.4 MHz with solutions in CCl₄-CDCl₃; shifts are in ppm relative to external CFCl₃ in CDCl₃. The ²⁹Si NMR spectra were recorded on a Bruker WM360 instrument at 71.5 MHz with solutions in CDCl₃.

For GLC-MS a 2 m column of 3% or OV-17 on Gaschrome Q (150-250 °C at 8 °C min⁻¹) linked to a Kratos MS25 spectrometer was used. Mass spectra were obtained by electron impact at 70 eV unless otherwise indicated.

Preparation of (Me₃Si)₂C(SiMe₂Ph)Cl.—A solution of

(Me₃Si)₂CCl₂ (9.0 g, 0.040 mol) in a mixture of THF (60 cm³), pentane (4 cm³) and Et₂O (10 cm³) was stirred at -120 °C and a 2.5 mol dm⁻³ solution of BuLi in hexane (15.7 cm³) cooled to -78 °C was added dropwise. The mixture was stirred for 3 h at -110 °C and neat Me₂PhSiCl (6.7 g, 0.040 mol) was added. The mixture was allowed to warm to room temperature, the solvents were removed under reduced pressure, and pentane (30 cm³) was added to the residue. The pentane solution was filtered, volatile materials were distilled off, and the residue was recrystallized from MeOH to give chloro(dimethylphenylsilyl)bis(trimethylsilyl)methane (6.5 g, 50%), m.p. 57 °C (Found: C, 55.05; H, 9.3. $C_{15}H_{29}ClSi_4$ requires: C, 54.8; H, 8.9%); δ_H 0.10 (18 H, s, SiMe₃), 0.55 (6 H, s, SiMe₂) and 7.2-7.7 (5 H, m, Ph); m/z 313 (10%, M - Me), 240 (10), 220 (35), 135 (100, SiMe₂Ph), 73 (85, SiMe₃) and 59 (20, SiMe₂H). (All chlorine-containing ions gave the expected isotope pattern.)

Preparation of $(Me_3Si)_2C(SiMe_2Ph)H$ from $(Me_3Si)_2C(SiMe_2Ph)Cl$.—A solution of $(Me_3Si)_2C(SiMe_2Ph)Cl$ (9.8 g, 0.030 mol) in a mixture of THF (60 cm³), pentane (5 cm³) and Et_2O (10 cm³) was stirred at -120 °C and a 2.5 mol dm⁻³ solution of BuLi in hexane (32 cm³, 0.080 mol) cooled to -78 °C was added dropwise. The mixture was stirred at -110 °C for a further 1 h and MeOH (3.2 g, 0.10 mol) was added dropwise with stirring. The mixture was allowed to warm to room temperature, solvents were taken off under reduced pressure, and the residue was distilled under vacuum. The fraction of b.p. 100-120 °C at 0.2 torr was crystallized from MeOH to give (dimethylphenylsilyl)bis(trimethylsilyl)methane (6.3 g, 70%) as a low-melting solid; δ_H 0.10 (18 H, s), 0.51 (6 H, s) and 7.2–7.7 (5 H, m); m/z 279 (100%, M – Me), 263 (15), 135 (45), 75 (55) and 59 (10).

Preparation of (Me₃Si)₂C(SiMe₂Ph)(SiEt₂H).—An 0.80 mol dm⁻³ solution of MeLi (prepared from MeBr and Li) in Et₂O (50 cm³, 0.040 mol) was added to a stirred solution of (Me₃Si)₂C $(SiMe_2Ph)H$ (10 g, 0.034 mol) in THF (100 cm³). The Et₂O was distilled off, the solution refluxed for 6 h, and Et₂SiHCl (5.0 g, 0.040 mol) added. The mixture was refluxed for 10 min then cooled and added to saturated aqueous ammonium chloride. The organic layer was separated and dried (MgSO₄) and volatile materials were removed under reduced pressure. The solid residue was recrystallized to give (diethylsilyl)(dimethylphenylsilyl)bis(trimethylsilyl)methane (7.0 g, 54%), m.p. 102 °C (Found: C, 59.8; H, 10.7. C₁₉H₄₀Si₄ requires: C, 60.0; H, 10.5%); $\delta_{\rm H}$ 0.25 (18 H, s), 0.60 (6 H, s), 0.80–1.20 (10 H, m, Et), 4.10–4.22 (1 H, m, SiH) and 7.20–7.8 (5 H, m); 2090 v/cm^{-1} (Si–H); m/z365 (30%, M - Me), 349 (75), 321 (15), 201 (10), 135 (45), 73(100) and 59 (55).

Preparation of (Me₃Si)₂C(SiMe₂Ph)(SiEt₂I).—A solution of (Me₄Si)₂C(SiMe₂Ph)(SiEt₂H) (1.0 g, 2.65 mmol), PhSiMe₃ (4 g; to take up HI) and iodine (0.75 g, 0.30 mmol) in CCl₄ (100 cm³) was stirred for 24 h at room temperature then washed with saturated aqueous Na₂S₂O₃ and dried (MgSO₄). Removal of the solvent left a solid, which was sublimed (130 °C at 0.2 torr) to give (diethyliodosilyl)(dimethylphenylsilyl)bis(trimethylsilyl)methane (1.0 g, 74%), m.p. 232–234 °C (Found: C, 44.8; H, 7.5. C₁₄H₃₉ISi₄ requires: C, 45.1; H, 7.7%); δ_H 0.40 (18 H, s), 0.72 (6 H, s), 0.95–1.25 (10 H, m) and 7.20–7.8 (5 H, m); m/z (CI, NH₃) 491 (15%, M − Me), 477 (10, M − Et), 429 (10, M − Ph), 379 (100, M − I), 335 (30), 261 (20), 135 (50), 73 (70) and 59 (35).

Reaction of (Me₃Si)₂C(SiMe₂Ph)(SiEt₂I), 1, with AgBF₄.—A mixture of 1 (0.40 g, 0.78 mmol) and AgBF₄ (0.20 g, 1.0 mmol) in Et₂O (20 cm³) was stirred at room temperature for 5 min. The

solid residue was extracted with pentane and the extract filtered and evaporated to dryness. The residue was sublimed (100 °C at 0.2 torr). Analysis by GLC-MS gave two peaks in 3:2 area ratio; the second component had a retention time identical to that of an authentic sample of unrearranged fluoride 2, and both components gave mass spectra virtually identical to that of the latter. The 19F NMR spectrum showed the expected quintet at $\delta_F - 156.2$ (J 10.1) for 2, and a heptet at $\delta_F - 138.9$ (J 7.8) that was assigned to the rearranged fluoride 3; the signals gave an integration ratio of ca. 2:3. The ²⁹Si NMR spectrum showed the expected signals from 2 [δ -2.63 (d, J 4.2, SiMe₃), -6.71 (d, J 4.1, SiMe₂Ph), 26.77 (d, J 294.5, SiEt₂F)] along with those from 3 [δ -2.69 (d, J 4.2, SiMe₃), -0.55 (d, J 2.5, SiEt₂Ph) and 27.37 (d, J 284.5, SiMe₂F)]; slightly different δ values were obtained in an earlier experiment.⁷ The ¹H NMR spectrum (at 360 MHz) showed the following signals (with approximate integration ratios and assignments in parenthesis): δ 0.20 (d, J 7.7) (1.7, SiMe₂F), 0.26 (s) (6.9, SiMe₃), 0.58 (s) (1.0, $SiMe_2Ph$); 0.60–1.44 (m) (5.2, $SiEt_2$) and 7.32–7.78 (m) (2.2, Ph). (The signals assigned to 2 were effectively identical to those from the authentic sample.) Expansion of the spectrum showed the actual ratio of integrated signals from SiMe₂Ph and SiMe₂F to be 1:1.4, and that of the integrated signals from SiMe₂ and SiMe₃ protons to be 1:2.9, compared with the theoretical 1:3.

Attempted Preparation of (Me₃Si)₂C(SiMe₂Ph)(SiEt₂Cl) from (Me₃Si)₂C(SiMe₂Ph)Cl.—A solution of (Me₃Si)C(Si-Me₂Ph)Cl (2.0 g, 6.10 mmol) in a mixture of THF (40 cm³), Et_2O (5 cm³) and pentane (5 cm³) was stirred at -100 °C and a 1.5 mol dm⁻³ solution of BuLi in hexane (4.2 cm³, 6.3 mmol) was added dropwise. When addition was complete the mixture was stirred at -100 °C for 1 h then allowed to warm to -78 °C and Et₂SiCl₂ (1.04 cm³, 6.8 mmol) was added. The mixture was allowed to warm slowly to room temperature and the solvent and excess of Et₂SiCl₂ were removed under reduced pressure. The solid residue was extracted with pentane and the extract filtered and evaporated, to leave an oil that was shown by GLC-MS to be a ca. 1:1 mixture of (Me₃Si)₂C(SiMe₂Ph)Bu [m/z 335 (10%, M - Me), 200 (40), 135 (100, SiMe₂Ph), 73 (45)and 59 (10)] and $(Me_3Si)_2C(SiMe_2Ph)H [m/z 279 (100\%, M -$ Me), 135 (25), 73 (20) and 59 (5)].

Preparation of (Me₃Si)₂C(SiMe₂Ph)(SiMe₂H) from (Me₃Si)₂C(SiMe₂Ph)Cl.—The procedure described in the preceding experiment was used but starting from (Me₃Si)₂C(SiMe₂Ph)Cl (6.0 g, 18.0 mmol), THF (50 cm³), Et₂O (5 cm³), pentane (5 cm³), BuLi (13.3 cm³ of 1.5 mol dm⁻³ solution in hexane; 20 mmol), and Me₂SiHCl (2.4 cm³, 22 mmol). Work-up as before gave a solid, which was recrystallized from MeOH and then sublimed (100 °C at 0.3 torr) to give (dimethylphenylsilyl)-(dimethylsilyl)bis(trimethylsilyl)methane (4.0 g, 62%), m.p. 84 °C (Found: C, 58.3; H, 10.1. C₁₇H₃₆Si₄ requires: C, 57.95; H, 10.2%); $\delta_{\rm H}$ 0.20 (6 H, d, J 3.8, SiMe₂H), 0.23 (18 H, s, SiMe₃), 0.59 (6 H, s, SiMe₂Ph), 4.47 (1 H, s, SiH) and 7.24–7.82 (5 H, m, Ph); m/z 337 (55%, M – Me), 274 (10), 201 (20), 135 (70), 73 (100) and 59 (10).

Preparation of (Me₃Si)₂C(SiMe₂Ph)H from (Me₃Si)₂CH₂.—A 1.5 mol dm⁻³ solution of MeLi in Et₂O (67 cm³, 0.10 mol; prepared from MeBr and Li) was added to a stirred solution of (Me₃Si)₂CH₂ (15 g, 0.094 mol) in THF (100 cm³). The Et₂O was distilled off and the remaining solution was refluxed for 22 h. A sample (1 cm³) of the (pale red) solution was withdrawn and added to Me₃SiCl (1 cm³), and after a few minutes the solvent and excess of Me₃SiCl were removed under reduced pressure. The residue was extracted with pentane, the extract was filtered, and the solvent was removed. The residue was dissolved in CCl₄ containing 5% of CH₂Cl₂ and the ¹H NMR spectrum recorded,

and from the relative heights of the signal from the Me₃Si protons of $(Me_3Si)_2CH_2$ at δ 0.12 and that from the corresponding protons of $(Me_3Si)_3CH$ at δ 0.15 it was concluded that ca. 27% of the $(Me_3Si)_2CH_2$ had been converted into $(Me_3Si)_2CHLi$. To the bulk of the solution containing the latter was added Me₂SiPhF (4.6 g, 0.030 mol), and the mixture was stirred at room temperature for 4 h then added cautiously to cold saturated aqueous NH₄Cl. The solvent and remaining $(Me_3Si)_2CH_2$ were distilled off and the residue distilled at 122 °C at 0.3 torr to give, as a colourless liquid, (dimethylphenylsilyl)bis(trimethylsilyl)methane [7.2 g, ca. 97% based on the $(Me_3Si)_2CHLi$ generated]; δ_H 0.11 (18 H, s), 0.61 (6 H, s) and 7.26–7.61 (5 H, m); m/z 279 (100%, M — Me), 263 (15), 249 (5), 135 (45), 73 (55) and 59 (10).

Preparation of (Me₃Si)₂C(SiMe₂Ph)(SiEt₂Cl) from (Me₃Si)₂-C(SiMe₂Ph)H.—A 1.5 mol dm⁻³ solution of MeLi (14 cm³, 0.021 mol) (prepared from MeBr and Li in Et₂O) was added to a stirred solution of (Me₃Si)₂C(SiMe₂Ph)H (6.0 g, 0.020 mol) in THF (100 cm³). The Et₂O was distilled off and the remaining solution refluxed for 6 h and Et₂SiCl₂ (3.5 g, 0.22 mol) then added. The mixture was refluxed for 24 h and then added to cold saturated aqueous ammonium chloride. The organic layer was separated and dried (MgSO₄). Volatile materials were removed by distillation under reduced pressure and the residue was recrystallized from MeOH to give a solid, which was sublimed at 125 °C at 0.2 torr to give (chlorodiethylsilyl)(dimethylphenylsilyl)bis(trimethylsilyl)methane (0.80 g, 9.5%), m.p. 166–167 °C (Found: C, 55.0; H, 9.4. C₁₉H₃₉ClSi₄ requires: C, 55.1; H, 9.4%); $\delta_{\rm H}$ 0.34 (18 H, s, SiMe₃), 0.65 (6 H, s, SiMe₂), 0.75–1.15 (10 H, m, Et) and 7.15–7.90 (10 H, m, Ph); m/z 399 (100%, M – Me), 385 (45, M - Et), 337, 135 (100), 121 (20) and 73 (100).

Preparation of (Me₃Si)₂C(SiMe₂Ph)(SiEt₂F).—Neat (Me₃-Si)₂CH₂ (17.6 g, 0.11 mol) was added to an ice cold solution of BuLi-TMEDA (0.10 mol) in hexane (40 cm³). The mixture was allowed to warm to room temperature overnight then Me₂SiPhF (15.4 g, 0.10 mol) was added dropwise with stirring, and stirring was continued for a further 6 h. The mixture was then added cautiously to an excess of ice-cold dilute hydrochloric acid, the organic layer was separated, dried (MgSO₄), and distilled at 95-100 °C at 0.2 torr to give a liquid, which was found to be a mixture of the expected (Me₃Si)₂C(SiMe₂Ph)H $(\delta_{\rm H}\,0.11$ and 0.61, identical with values for an authentic sample) with a second component (δ_H 0.10 and 0.57) that appeared from its mass spectrum to be an isomer of the main product. Examination by GLC-MS (OV-17 on GasChrom Q at 178 °C) gave two peaks in ca. 3:2 area ratio, both components giving the same main ions in the mass spectrum $\lceil m/z \rceil$ 279 (M - Me), 263, 207, 191, 135, 73 and 59] but with different relative intensities. Nevertheless, a solution of the product mixture in THF (100 cm³) was treated dropwise with stirring with a 1.62 mol dm⁻³ solution of MeLi (30 cm³, 0.50 mol) (prepared from MeBr and Li) in Et₂O. The Et₂O was distilled off, the solution was refluxed for 6 h, and Et₂SiF₂ (6.2 g, 0.050 mol) was added. The mixture was refluxed for 24 h then added cautiously to cold saturated aqueous ammonium chloride. The aqueous layer was separated and dried (MgSO₄) and volatile materials were distilled off under reduced pressure. The solid residue was recrystallized from MeOH and sublimed at 100 °C at 0.2 torr to give (diethylfluorosilyl)(dimethylphenylsilyl)bis(trimethylsilyl)methane (6.0 g, 30% based on Et₂SiF₂ taken), m.p. 95 °C (Found: C, 57.5; H, 9.5. C₁₉H₃₉FSi₄ requires: C, 57.3; 9.8%); $\delta_{\rm H}$ 0.27 (18 H, s, SiMe₃), 0.59 (6 H, s, SiMe₂), 0.60–1.04 (10 H, m, SiEt₂) and 7.20–7.80 (5 H, m, Ph); $\delta_{\rm F}$ –156.11 (m, J 11.5); $\delta_{Si} - 6.67$ (d, 4.1, SiMe₂Ph), -2.65 (d, J 4.2, SiMe₃) and 26.79 (d, J 295, SiEt₂F); m/z 383 (70%, M - Me), 369 (80, M -Et), 277 (10), 263 (10), 215 (40), 135 (75), 73 (100) and 59 (65).

Acknowledgements

We thank the SERC for support of this work, the Royal Society for the award of a 1983 University Research Fellowship (to P. D. L.), the Iraqi Ministry of Higher Education and the University of Basrah for the award of a postgraduate scholarship (to S. T. N.), Mr. A. M. Greenway for the mass spectra, and Dr. A. G. Avent for help with the NMR spectra.

References

- C. Eaborn, D. A. R. Happer, S. P. Hopper and K. D. Safa, J. Organomet. Chem., 1980, 188, 179; C. Eaborn, in Organosilicon and Bio-organosilicon Chemistry, ed. H. Sakurai, Ellis Horwood, Chichester, 1985, pp. 123-130.
- 2 A. R. Bassindale and P. G. Taylor, in *The Chemistry of Organic Silicon Compounds*, eds. S. Patai and Z. Rappoport, Wiley, Chichester, 1989, pp. 880-885.

- 3 G. A. Ayoko and C. Eaborn, J. Chem. Soc., Perkin Trans. 2, 1987, 1047.
- 4 G. A. Olah, K. S. Prakash, R. E. Williams, L. D. Field and K. Wade, Hypercarbon Chemistry, Wiley, New York, 1987, pp. 41-42.
- 5 P. Vogel, Carbocation Chemistry, Elsevier, Amsterdam, 1985, pp. 267-272.
- 6 E. Bauml, G. Kolberg and H. Mayr, Tetrahedron Lett., 1987, 28, 387.
- 7 C. Eaborn, P. D. Lickiss, S. T. Najim and W. Stańczyk, J. Chem. Soc., Chem. Commun., 1987, 1461.
- 8 C. Eaborn, K. L. Jones, P. D. Lickiss and W. A. Stańczyk, *J. Chem. Soc., Perkin Trans.* 2, in the press.
- 9 C. Eaborn and A. I. Mansour, J. Chem. Soc., Perkin Trans. 2, 1985, 729
- 10 M. A. Cook, C. Eaborn, A. E. Jukes and D. R. M. Walton, J. Organomet. Chem., 1970, 24, 529.

Paper 2/04418H Received 14th August 1992 Accepted 29th September 1992